Introducing KSML: Kafka Streams for Low Code Environments
Kafka Streams has captured the hearts and minds of many developers that want to develop streaming applications on top of Kafka. But as powerful as the framework is, Kafka Streams has had a hard time getting around the requirement of writing Java code and setting up build pipelines.
On this page
Abstract
Kafka Streams has captured the hearts and minds of many developers that want to develop streaming applications on top of Kafka. But as powerful as the framework is, Kafka Streams has had a hard time getting around the requirement of writing Java code and setting up build pipelines. There were some attempts to rebuild Kafka Streams, but up until now popular languages like Python did not receive equally powerful (and maintained) stream processing frameworks. In this article we will present a new declarative approach to unlock Kafka Streams, called KSML. By the time you finish reading, you will be able to write streaming applications yourself, using only a few simple basic rules and Python snippets.
Background
Axual is a vendor of Kafka-based streaming platforms to enterprise customers. Under the names Axual Platform and Axual Cloud, we sell our solution primarily to enterprise customers. Our overall mission is Streaming Made Simple, meaning that our products try to hide the complexities of Kafka for customers. We do this through delivery of a standard approach, standardized architecture and easy installation. For more information on Axual, visit https://axual.com.
One of the key features of Axual’s products is self-service for DevOps teams. An intuitive UI allows customer teams to configure their piece of the common Kafka platform. Teams define topics, schemas and applications themselves. Strict ownership and approval processes provide the necessary data governance for enterprises.
Users of self-service are typically not very Kafka-savvy. They know about Kafka, may like it even, but their primary responsibility is to build a business application that happens to require interaction with Kafka. Self-service allows them to define their application, either as a custom application or as a Kafka Connector. But up until recently we had no way of easily defining “simple transformation” apps. Kafka Streams offers the basis for stream processing, but requires Java developers and (often complex) build pipelines.
To allow easier definition of streaming apps, we started to investigate if we could unlock the power of Kafka Streams without requiring Java.
Inspiration from Home Assistant
During the Covid-19 lockdown I started to experiment with Home Assistant, a home automation platform that integrates with everything in your house and the kitchen sink. If you are into home automation, I highly recommend you check out this tremendous piece of software.
To allow any kind of device from any vendor to be integrated and controlled, Home Assistant defines its own YAML structures for automations, scripts and sensors amongst other things. The really nice thing about YAML is that it is interpreted and does not require compilation.
Hypothesis
The Home Assistant way of defining custom logic got us thinking: could we use a similar structure to define Kafka Streams topologies? It would be easy to imagine a topology in the following way:
pipelines:
main:
from: some_topic
to: some_other_topic
This example defines a topology, which simply copies messages from a source topic to a target topic. But anyone familiar with Kafka Streams will immediately recognize that this can only be part of the overall solution. Kafka Streams requires a lot of custom user functions in Java, such as Predicates, Key/Value transformers and ValueJoiners. If we want to define everything in YAML, we need a compiler-free expression language.
We then turned to Jython, which is a complete Python implementation that runs in the Java JVM. Running Python code is as easy as creating an instance of PythonInterpreter and asking it to execute code provided as strings.
import org.python.util.PythonInterpreter;
public class JythonHelloWorld {
public static void main(String[] args) {
try(PythonInterpreter pyInterp = new PythonInterpreter()) {
pyInterp.exec("print('Hello Python World!')");
}
}
}
Using a few days of tinkering, we were able to combine the two into a generic interpreter that we envisioned. Before diving into the examples, let’s look at the test environment we used.
Setting up a test environment
To illustrate KSML’s capabilities, we set up a test topic, called ksml_sensordata_avro
with key/value types of String
/SensorData
. The SensorData
schema contains the following fields:
{
"namespace": "io.axual.ksml.example",
"doc": "Emulated sensor data with a few additional attributes",
"name": "SensorData",
"type": "record",
"fields": [
{
"doc": "The name of the sensor",
"name": "name",
"type": "string"
},
{
"doc": "The timestamp of the sensor reading",
"name": "timestamp",
"type": "long"
},
{
"doc": "The value of the sensor, represented as string",
"name": "value",
"type": "string"
},
{
"doc": "The type of the sensor",
"name": "type",
"type": {
"name": "SensorType",
"type": "enum",
"symbols": [
"AREA",
"HUMIDITY",
"LENGTH",
"STATE",
"TEMPERATURE"
]
}
},
{
"doc": "The unit of the sensor",
"name": "unit",
"type": "string"
},
{
"doc": "The color of the sensor",
"name": "color",
"type": [
"null",
"string"
],
"default": null
},
{
"doc": "The city of the sensor",
"name": "city",
"type": [
"null",
"string"
],
"default": null
},
{
"doc": "The owner of the sensor",
"name": "owner",
"type": [
"null",
"string"
],
"default": null
}
]
}
Next we created a producer, which generates random test data and produces it on the topic. We will leave out the specific of this producer, but you can assume it simply fills out all fields with random values picked from a list of possible values.
So without any further delays, let’s see how KSML allows us to process this data.
KSML in practice
Example 1. Inspect data on a topic
The first example is one where we inspect data on a specific topic. The definition is as follows:
streams:
- topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
functions:
print_message:
type: forEach
code: "print('key='+(key if isinstance(key,str) else str(key))+', value='+(value if isinstance(value,str) else str(value)))"
pipelines:
main:
from: ksml_sensordata_avro
forEach: print_message
Let’s disect this definition one element at a time. Before defining processing logic, we first define the streams used by the definition. In this case we define the ksml_sensordata_avro
, which as explained above has string
key and SensorData
values.
Next is a list of functions that can be used by the processing logic. Here we define just one, print_message
, which simply prints the key and value of a message to stdout.
The third element pipelines
defines the real processing logic. We define a pipeline called main
, which takes messages from ksml_sensordata_avro
and passes them to print_message
.
The definition file is parsed by KSML and translated into a Kafka Streams topology, which is described as follows:
Sub-topology: 0
Source: KSTREAM-SOURCE-0000000000 (topics: [ksml_sensordata_avro])
--> KSTREAM-FOREACH-0000000001
Processor: KSTREAM-FOREACH-0000000001 (stores: [])
--> none
<-- KSTREAM-SOURCE-0000000000
And the output of the generated topology looks like this:
key=sensor0, value={'owner': 'Evan', 'color': 'red', 'city': 'Xanten', '@type': 'io.axual.ksml.example.SensorData', 'type': 'AREA', 'unit': 'ft2', 'name': 'sensor0', 'value': '225', 'timestamp': 1620217832071L}
key=sensor1, value={'owner': 'Charlie', 'color': 'red', 'city': 'Alkmaar', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': '%', 'name': 'sensor1', 'value': '86', 'timestamp': 1620217833268L}
key=sensor2, value={'owner': 'Dave', 'color': 'red', 'city': 'Alkmaar', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': 'g/m3', 'name': 'sensor2', 'value': '89', 'timestamp': 1620217833269L}
key=sensor3, value={'owner': 'Charlie', 'color': 'white', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'LENGTH', 'unit': 'm', 'name': 'sensor3', 'value': '392', 'timestamp': 1620217833269L}
key=sensor4, value={'owner': 'Dave', 'color': 'red', 'city': 'Xanten', '@type': 'io.axual.ksml.example.SensorData', 'type': 'LENGTH', 'unit': 'ft', 'name': 'sensor4', 'value': '459', 'timestamp': 1620217833270L}
key=sensor5, value={'owner': 'Bob', 'color': 'red', 'city': 'Alkmaar', '@type': 'io.axual.ksml.example.SensorData', 'type': 'TEMPERATURE', 'unit': 'C', 'name': 'sensor5', 'value': '466', 'timestamp': 1620217833270L}
key=sensor6, value={'owner': 'Dave', 'color': 'red', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': 'g/m3', 'name': 'sensor6', 'value': '37', 'timestamp': 1620217833270L}
key=sensor7, value={'owner': 'Evan', 'color': 'red', 'city': 'Alkmaar', '@type': 'io.axual.ksml.example.SensorData', 'type': 'TEMPERATURE', 'unit': 'F', 'name': 'sensor7', 'value': '704', 'timestamp': 1620217833271L}
key=sensor8, value={'owner': 'Dave', 'color': 'red', 'city': 'Leiden', '@type': 'io.axual.ksml.example.SensorData', 'type': 'STATE', 'unit': 'state', 'name': 'sensor8', 'value': 'on', 'timestamp': 1620217833271L}
key=sensor9, value={'owner': 'Dave', 'color': 'black', 'city': 'Leiden', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': 'g/m3', 'name': 'sensor9', 'value': '67', 'timestamp': 1620217833272L}
key=sensor0, value={'owner': 'Evan', 'color': 'blue', 'city': 'Utrecht', '@type': 'io.axual.ksml.example.SensorData', 'type': 'TEMPERATURE', 'unit': 'F', 'name': 'sensor0', 'value': '2', 'timestamp': 1620217833272L}
key=sensor1, value={'owner': 'Alice', 'color': 'black', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'LENGTH', 'unit': 'm', 'name': 'sensor1', 'value': '126', 'timestamp': 1620217833272L}
key=sensor2, value={'owner': 'Charlie', 'color': 'white', 'city': 'Xanten', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': '%', 'name': 'sensor2', 'value': '58', 'timestamp': 1620217833273L}
As you can see, the output of the application is exactly that what we defined it to be in the print_message
function, namely a dump of all data found on the topic.
Example 2. Copying data to another topic
Now that we can see what data is on a topic, we will start to manipulate its routing. In this example we are copying unmodified data to a secondary topic:
streams:
- topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
- topic: ksml_sensordata_copy
keyType: string
valueType: avro:SensorData
functions:
print_message:
type: forEach
code: "print('key='+(key if isinstance(key,str) else str(key))+', value='+(value if isinstance(value,str) else str(value)))"
pipelines:
main:
from: ksml_sensordata_avro
via:
- type: peek
forEach: print_message
to: ksml_sensordata_copy
You can see that we specified a second topic in this example, being the target topic that all messages are copied to. The print_message
function is unchanged, but the pipeline did undergo some changes. Two new elements are introduced here, namely via
and to
.
The via
tag allows users to define a series of operations executed on the data. In this case there is only one, namely a peek
operation which does not modify any data, but simply outputs the data on stdout as a side-effect.
The to
operation is a so-called “sink operation”. Sink operations are always last in a pipeline. Processing of the pipeline does not continue after it was delivered to a sink operation. Note that in the first example above forEach
is also a sink operation, whereas in this example we achieve the same result by passing the print_message
function as a parameter to the peek
operation.
When this definition is translated by KSML, the following Kafka Streams topology is created:
Sub-topology: 0
Source: KSTREAM-SOURCE-0000000000 (topics: [ksml_sensordata_copy])
--> none
Sub-topology: 1
Source: KSTREAM-SOURCE-0000000001 (topics: [ksml_sensordata_avro])
--> KSTREAM-PEEK-0000000002
Processor: KSTREAM-PEEK-0000000002 (stores: [])
--> KSTREAM-SINK-0000000003
<-- KSTREAM-SOURCE-0000000001
Sink: KSTREAM-SINK-0000000003 (topic: ksml_sensordata_copy)
<-- KSTREAM-PEEK-0000000002
The output is similar to that of example 1, but the same data can also be found on the ksml_sensordata_copy
topic now.
Example 3. Filtering data
Now that we can read and write data, let’s see if we can apply some logic to the processing as well. In this example we will be filtering data based on the contents of the value:
streams:
- topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
- topic: ksml_sensordata_filtered
keyType: string
valueType: avro:SensorData
functions:
print_message:
type: forEach
code: "print('key='+(key if isinstance(key,str) else str(key))+', value='+(value if isinstance(value,str) else str(value)))"
filter_message:
type: predicate
expression: value['color'] == 'blue'
pipelines:
main:
from: ksml_sensordata_avro
via:
- type: filter
predicate: filter_message
- type: peek
forEach: print_message
to: ksml_sensordata_filtered
Again, first we define the streams and the functions involved in the processing. You can see we added a new function called filter_message
which returns true
or false
based on the color
field in the value of the message. This function is used below in the pipeline.
The pipeline is extended to include a filter
operation, which takes a predicate
function as parameter. That function is called for every input message. Only messages for which the function returns true
are propagated. All other messages are discarded.
Using this definition, KSML generates the following Kafka Streams topology:
Sub-topology: 0
Source: KSTREAM-SOURCE-0000000000 (topics: [ksml_sensordata_avro])
--> KSTREAM-FILTER-0000000002
Processor: KSTREAM-FILTER-0000000002 (stores: [])
--> KSTREAM-PEEK-0000000003
<-- KSTREAM-SOURCE-0000000000
Processor: KSTREAM-PEEK-0000000003 (stores: [])
--> KSTREAM-SINK-0000000004
<-- KSTREAM-FILTER-0000000002
Sink: KSTREAM-SINK-0000000004 (topic: ksml_sensordata_filtered)
<-- KSTREAM-PEEK-0000000003
Sub-topology: 1
Source: KSTREAM-SOURCE-0000000001 (topics: [ksml_sensordata_filtered])
--> none
When it executes, we see the following output:
key=sensor0, value={'owner': 'Evan', 'color': 'blue', 'city': 'Utrecht', '@type': 'io.axual.ksml.example.SensorData', 'type': 'TEMPERATURE', 'unit': 'F', 'name': 'sensor0', 'value': '2', 'timestamp': 1620217833272L}
key=sensor4, value={'owner': 'Bob', 'color': 'blue', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'STATE', 'unit': 'state', 'name': 'sensor4', 'value': 'on', 'timestamp': 1620217833273L}
key=sensor5, value={'owner': 'Bob', 'color': 'blue', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': '%', 'name': 'sensor5', 'value': '14', 'timestamp': 1620217833277L}
key=sensor6, value={'owner': 'Charlie', 'color': 'blue', 'city': 'Alkmaar', '@type': 'io.axual.ksml.example.SensorData', 'type': 'STATE', 'unit': 'state', 'name': 'sensor6', 'value': 'off', 'timestamp': 1620217833278L}
key=sensor7, value={'owner': 'Bob', 'color': 'blue', 'city': 'Utrecht', '@type': 'io.axual.ksml.example.SensorData', 'type': 'AREA', 'unit': 'ft2', 'name': 'sensor7', 'value': '292', 'timestamp': 1620217833278L}
key=sensor4, value={'owner': 'Charlie', 'color': 'blue', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': '%', 'name': 'sensor4', 'value': '72', 'timestamp': 1620217833280L}
key=sensor5, value={'owner': 'Evan', 'color': 'blue', 'city': 'Leiden', '@type': 'io.axual.ksml.example.SensorData', 'type': 'LENGTH', 'unit': 'm', 'name': 'sensor5', 'value': '876', 'timestamp': 1620217833281L}
key=sensor8, value={'owner': 'Alice', 'color': 'blue', 'city': 'Utrecht', '@type': 'io.axual.ksml.example.SensorData', 'type': 'STATE', 'unit': 'state', 'name': 'sensor8', 'value': 'off', 'timestamp': 1620217833282L}
key=sensor1, value={'owner': 'Evan', 'color': 'blue', 'city': 'Alkmaar', '@type': 'io.axual.ksml.example.SensorData', 'type': 'LENGTH', 'unit': 'm', 'name': 'sensor1', 'value': '952', 'timestamp': 1620217833282L}
key=sensor2, value={'owner': 'Bob', 'color': 'blue', 'city': 'Leiden', '@type': 'io.axual.ksml.example.SensorData', 'type': 'TEMPERATURE', 'unit': 'F', 'name': 'sensor2', 'value': '602', 'timestamp': 1620217833286L}
As you can see, the filter operation did its work. Only messages with field color
set to blue
are passed on to the peek
operation, while other messages are discarded.
Example 4. Branching messages
Another way to filter messages is to use a branch
operation. This is also a sink operation, which closes the processing of a pipeline. It is similar to forEach
and to
in that respect, but has a different definition and behaviour.
streams:
- topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
- topic: ksml_sensordata_blue
keyType: string
valueType: avro:SensorData
- topic: ksml_sensordata_red
keyType: string
valueType: avro:SensorData
functions:
print_message:
type: forEach
code: "print('key='+(key if isinstance(key,str) else str(key))+', value='+(value if isinstance(value,str) else str(value)))"
pipelines:
main:
from: ksml_sensordata_avro
via:
- type: peek
forEach: print_message
branch:
- if:
expression: value['color'] == 'blue'
to: ksml_sensordata_blue
- if:
expression: value['color'] == 'red'
to: ksml_sensordata_red
- forEach:
code: |
print('Unknown color sensor: '+str(value))
The branch
operation takes a list of branches as its parameters, which each specifies a processing pipeline of its own. Branches contain the keyword if
, which take a predicate function that determines if a message will flow into that particular branch, or if it will be passed to the next branch(es). Every message will only end up in one branch, namely the first one in order where the if
predcate function returns true
.
In the example we see that the first branch will be populated only with messages with color
field set to blue
. Once there, these messages will be written to ksml_sensordata_blue
. The second branch will only contain messages with color
=red
and these messages will be written to ksml_sensordata_red
. Finally, the last branch outputs a message that the color is unknown and ends any further processing.
KSML translates the definition into the following Kafka Streams topology:
Sub-topology: 0
Source: KSTREAM-SOURCE-0000000000 (topics: [ksml_sensordata_blue])
--> none
Sub-topology: 1
Source: KSTREAM-SOURCE-0000000001 (topics: [ksml_sensordata_red])
--> none
Sub-topology: 2
Source: KSTREAM-SOURCE-0000000002 (topics: [ksml_sensordata_avro])
--> KSTREAM-PEEK-0000000003
Processor: KSTREAM-PEEK-0000000003 (stores: [])
--> KSTREAM-BRANCH-0000000004
<-- KSTREAM-SOURCE-0000000002
Processor: KSTREAM-BRANCH-0000000004 (stores: [])
--> KSTREAM-BRANCHCHILD-0000000005, KSTREAM-BRANCHCHILD-0000000006, KSTREAM-BRANCHCHILD-0000000007
<-- KSTREAM-PEEK-0000000003
Processor: KSTREAM-BRANCHCHILD-0000000005 (stores: [])
--> KSTREAM-SINK-0000000008
<-- KSTREAM-BRANCH-0000000004
Processor: KSTREAM-BRANCHCHILD-0000000006 (stores: [])
--> KSTREAM-SINK-0000000009
<-- KSTREAM-BRANCH-0000000004
Processor: KSTREAM-BRANCHCHILD-0000000007 (stores: [])
--> KSTREAM-FOREACH-0000000010
<-- KSTREAM-BRANCH-0000000004
Processor: KSTREAM-FOREACH-0000000010 (stores: [])
--> none
<-- KSTREAM-BRANCHCHILD-0000000007
Sink: KSTREAM-SINK-0000000008 (topic: ksml_sensordata_blue)
<-- KSTREAM-BRANCHCHILD-0000000005
Sink: KSTREAM-SINK-0000000009 (topic: ksml_sensordata_red)
<-- KSTREAM-BRANCHCHILD-0000000006
It is clear that KSML integrated the branch operation in the topology. Its output looks like this:
key=sensor0, value={'owner': 'Evan', 'color': 'red', 'city': 'Xanten', '@type': 'io.axual.ksml.example.SensorData', 'type': 'AREA', 'unit': 'ft2', 'name': 'sensor0', 'value': '225', 'timestamp': 1620217832071L}
key=sensor1, value={'owner': 'Charlie', 'color': 'red', 'city': 'Alkmaar', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': '%', 'name': 'sensor1', 'value': '86', 'timestamp': 1620217833268L}
key=sensor2, value={'owner': 'Dave', 'color': 'red', 'city': 'Alkmaar', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': 'g/m3', 'name': 'sensor2', 'value': '89', 'timestamp': 1620217833269L}
key=sensor3, value={'owner': 'Charlie', 'color': 'white', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'LENGTH', 'unit': 'm', 'name': 'sensor3', 'value': '392', 'timestamp': 1620217833269L}
Unknown color sensor: {'owner': 'Charlie', 'color': 'white', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'LENGTH', 'unit': 'm', 'name': 'sensor3', 'value': '392', 'timestamp': 1620217833269L}
key=sensor4, value={'owner': 'Dave', 'color': 'red', 'city': 'Xanten', '@type': 'io.axual.ksml.example.SensorData', 'type': 'LENGTH', 'unit': 'ft', 'name': 'sensor4', 'value': '459', 'timestamp': 1620217833270L}
key=sensor5, value={'owner': 'Bob', 'color': 'red', 'city': 'Alkmaar', '@type': 'io.axual.ksml.example.SensorData', 'type': 'TEMPERATURE', 'unit': 'C', 'name': 'sensor5', 'value': '466', 'timestamp': 1620217833270L}
key=sensor6, value={'owner': 'Dave', 'color': 'red', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': 'g/m3', 'name': 'sensor6', 'value': '37', 'timestamp': 1620217833270L}
key=sensor7, value={'owner': 'Evan', 'color': 'red', 'city': 'Alkmaar', '@type': 'io.axual.ksml.example.SensorData', 'type': 'TEMPERATURE', 'unit': 'F', 'name': 'sensor7', 'value': '704', 'timestamp': 1620217833271L}
key=sensor8, value={'owner': 'Dave', 'color': 'red', 'city': 'Leiden', '@type': 'io.axual.ksml.example.SensorData', 'type': 'STATE', 'unit': 'state', 'name': 'sensor8', 'value': 'on', 'timestamp': 1620217833271L}
key=sensor9, value={'owner': 'Dave', 'color': 'black', 'city': 'Leiden', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': 'g/m3', 'name': 'sensor9', 'value': '67', 'timestamp': 1620217833272L}
Unknown color sensor: {'owner': 'Dave', 'color': 'black', 'city': 'Leiden', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': 'g/m3', 'name': 'sensor9', 'value': '67', 'timestamp': 1620217833272L}
key=sensor0, value={'owner': 'Evan', 'color': 'blue', 'city': 'Utrecht', '@type': 'io.axual.ksml.example.SensorData', 'type': 'TEMPERATURE', 'unit': 'F', 'name': 'sensor0', 'value': '2', 'timestamp': 1620217833272L}
key=sensor1, value={'owner': 'Alice', 'color': 'black', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'LENGTH', 'unit': 'm', 'name': 'sensor1', 'value': '126', 'timestamp': 1620217833272L}
Unknown color sensor: {'owner': 'Alice', 'color': 'black', 'city': 'Amsterdam', '@type': 'io.axual.ksml.example.SensorData', 'type': 'LENGTH', 'unit': 'm', 'name': 'sensor1', 'value': '126', 'timestamp': 1620217833272L}
key=sensor2, value={'owner': 'Charlie', 'color': 'white', 'city': 'Xanten', '@type': 'io.axual.ksml.example.SensorData', 'type': 'HUMIDITY', 'unit': '%', 'name': 'sensor2', 'value': '58', 'timestamp': 1620217833273L}
We see that every message processed by the pipeline is sent through the print_message
function. But the branch operation sorts the messages and sends messages with colors blue
and red
into their own branches. The only colors that show up as Unknown color sensor
messages are non-blue and non-red.
5. Dynamic routing
As the last example in this article, we will route messages dynamically using Kafka Streams’ TopicNameExtractor.
streams:
- topic: ksml_sensordata_avro
keyType: string
valueType: avro:SensorData
- topic: ksml_sensordata_sensor0
keyType: string
valueType: avro:SensorData
- topic: ksml_sensordata_sensor1
keyType: string
valueType: avro:SensorData
- topic: ksml_sensordata_sensor2
keyType: string
valueType: avro:SensorData
functions:
print_message:
type: forEach
code: "print('key='+(key if isinstance(key,str) else str(key))+', value='+(value if isinstance(value,str) else str(value)))"
pipelines:
main:
from: ksml_sensordata_avro
via:
- type: peek
forEach: print_message
toExtractor:
code: |
if key == 'sensor1':
return 'ksml_sensordata_sensor1'
elif key == 'sensor2':
return 'ksml_sensordata_sensor2'
else:
return 'ksml_sensordata_sensor0'
The toExtractor
operation takes a function, which determines the routing of every message by returning a topic name string. In this case, when the key of a message is sensor1
then the message will be sent to ksml_sensordata_sensor1
. When it contains sensor2
the message is sent to ksml_sensordata_sensor2
. All other messages are sent to ksml_sensordata_sensor0
.
The equivalent Kafka Streams topology looks like this:
Sub-topology: 0
Source: KSTREAM-SOURCE-0000000000 (topics: [ksml_sensordata_sensor0])
--> none
Sub-topology: 1
Source: KSTREAM-SOURCE-0000000001 (topics: [ksml_sensordata_avro])
--> KSTREAM-PEEK-0000000004
Processor: KSTREAM-PEEK-0000000004 (stores: [])
--> KSTREAM-SINK-0000000005
<-- KSTREAM-SOURCE-0000000001
Sink: KSTREAM-SINK-0000000005 (extractor class: io.axual.ksml.user.UserTopicNameExtractor@713529c2)
<-- KSTREAM-PEEK-0000000004
Sub-topology: 2
Source: KSTREAM-SOURCE-0000000002 (topics: [ksml_sensordata_sensor2])
--> none
Sub-topology: 3
Source: KSTREAM-SOURCE-0000000003 (topics: [ksml_sensordata_sensor1])
--> none
The output is nothing special anymore, since it just shows all messages.
Current status
So after having seen these examples, I hope I was able to spark your interest. So it is good to understand the current status of the project.
We released KSML as version 0.0.1, indicating that people should treat this as a technology preview (or alpha) software and not use it in production. The reason for writing this article is that we think there is potential for a new community to be formed around KSML. We expect input and perspectives of others to greatly benefit the state of the language as well as the implementation, so we want to tap into your collective enthusiasm early.
The state of KSML is already much more advanced than what we have shown here. In this article we only touched upon the simplest operations currently supported. The 0.0.1 release already supports almost all Kafka Streams operations, though not fully tested yet. In terms of data types, we support all primitive types (strings, integers, booleans etcetera), basic Avro handling (through Python dicts) and will be introducing Json support soon. This makes KSML already quite capable to handle simple stream processing logic.
Next steps
For the near future we foresee three main activities around KSML:
- Test, test, test: we have tested quite a lot of processing logic, but internal refactoring to reach a first alpha release has probably introduced some bugs that we overlooked at this stage. Therefore we welcome everyone to give it a go and to come up with findings, suggestions and improvements.
- Build community: using this article and several presentations, we want to get your honest feedback on this idea. Would it be of value to you and your use cases? How would you want to run these kinds of processing pipelines? As a library, a Docker image or perhaps on a generic processing container like Kafka Connect provides?
- Work towards a beta release: we know that the current code is very much alpha. Unit tests and integration tests are severely lacking, but we did not focus on these at this stage, because finding out about usefulness of the concept is more important than elegant code at this stage. But of course, as we evolve the KSML language, its typing model and its implementation, code quality needs serious attention.
If this article has sparked your interest, feel free to take a test drive and let us hear your experiences. You can find the main website at https://ksml.io. The code is hosted at https://github.com/Axual/ksml.
About the author
Jeroen van Disseldorp is CEO and Founder of Axual, a company that provides a ready-to-use distribution of Apache Kafka for enterprises. He has a broad background in systems development and architecture. Before Axual, Jeroen worked as a principal consultant for Capgemini and was global thought leader for open source software.
Download the Whitepaper
Download nowAnswers to your questions about Axual’s All-in-one Kafka Platform
Are you curious about our All-in-one Kafka platform? Dive into our FAQs
for all the details you need, and find the answers to your burning questions.
Related blogs
Apache Kafka has become a central component of modern data architectures, enabling real-time data streaming and integration across distributed systems. Within Kafka’s ecosystem, Kafka Connect plays a crucial role as a powerful framework designed for seamlessly moving data between Kafka and external systems. Kafka Connect provides a standardized, scalable approach to data integration, removing the need for complex custom scripts or applications. For architects, product owners, and senior engineers, Kafka Connect is essential to understand because it simplifies data pipelines and supports low-latency, fault-tolerant data flow across platforms. But what exactly is Kafka Connect, and how can it benefit your architecture?
Apache Kafka is a powerful platform for handling real-time data streaming, often used in systems that follow the Publish-Subscribe (Pub-Sub) model. In Pub-Sub, producers send messages (data) that consumers receive, enabling asynchronous communication between services. Kafka’s Pub-Sub model is designed for high throughput, reliability, and scalability, making it a preferred choice for applications needing to process massive volumes of data efficiently. Central to this functionality are topics and partitions—essential elements that organize and distribute messages across Kafka. But what exactly are topics and partitions, and why are they so important?
Strimzi Kafka offers an efficient solution for deploying and managing Apache Kafka on Kubernetes, making it easier to handle Kafka clusters within a Kubernetes environment. In this article, we'll guide you through opening a shell on a Kafka broker pod in Kubernetes and listing all the topics in your Kafka cluster using an SSL-based connection.